May 6, 2022 · The null hypothesis (H 0) answers “No, there’s no effect in the population.” The alternative hypothesis (H a) answers “Yes, there is an effect in the population.” The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample. ... The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt. ... Mar 10, 2021 · H 0 (Null Hypothesis): Population parameter =, ≤, ≥ some value. H A (Alternative Hypothesis): Population parameter <, >, ≠ some value. Note that the null hypothesis always contains the equal sign. We interpret the hypotheses as follows: Null hypothesis: The sample data provides no evidence to support some claim being made by an individual. ... Aug 3, 2023 · Alternative hypothesis: Definition: The null hypothesis is a general statement that states that there is no relationship between two phenomenons under consideration or that there is no association between two groups. An alternative hypothesis is a statement that describes that there is a relationship between two selected variables in a study ... ... May 18, 2022 · Usually, the statement which we check regarding the null hypothesis is commonly known as the alternative hypothesis. Most of the times alternative hypothesis is exactly the opposite of the null hypothesis. This is what generally researchers or scientists try to approve. Alternative hypothesis is represented as Ha or H1. ... An alternative hypothesis is a statement; that is simply the inverse of the null hypothesis, i.e. there is some statistical significance between two measured phenomenon. A null hypothesis is what, the researcher tries to disprove whereas an alternative hypothesis is what the researcher wants to prove. ... Jun 17, 2024 · In this case, a research hypothesis is a broad, testable statement about the expected relationship between variables, while a statistical hypothesis specifically refers to writing null and alternative hypotheses used in statistical testing to validate or refute an initial study assumption (O’Donnell et al., 2023). ... State Null and Alternative Hypotheses. Null Hypothesis: On the average, the dosage sold under this brand is 50 mg (population mean dosage = 50 mg). Alternative Hypothesis: On the average, the dosage sold under this brand is not 50 mg (population mean dosage ≠ 50 mg). This is a two-sided alternative hypothesis. ... 5 days ago · Null Hypothesis (H 0) – This can be thought of as the implied hypothesis. “Null” meaning “nothing.” This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change. Alternative Hypothesis (H a) – This is also known as the claim ... ... Apr 28, 2023 · Alternative Hypothesis . The alternative hypothesis (H a H_a H a or H 1 H_1 H 1 ) is the hypothesis being proposed in opposition to the null hypothesis. Examples of Null and Alternative Hypotheses In a hypothesis test, the null and alternative hypotheses must be mutually exclusive statements, meaning both hypotheses cannot be true at the same time. ... ">

Interested in teaching this course?

Lumen can help! Review our up-to-date Introduction to Statistics by clicking the link below. From there, you can request a demo and review the course materials in your Learning Management System (LMS).

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

Candela Citations

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

Statology

How to Write a Null Hypothesis (5 Examples)

A hypothesis test uses sample data to determine whether or not some claim about a population parameter is true.

Whenever we perform a hypothesis test, we always write a null hypothesis and an alternative hypothesis, which take the following forms:

H 0 (Null Hypothesis): Population parameter =,  ≤, ≥ some value

H A  (Alternative Hypothesis): Population parameter <, >, ≠ some value

Note that the null hypothesis always contains the equal sign .

We interpret the hypotheses as follows:

Null hypothesis: The sample data provides no evidence to support some claim being made by an individual.

Alternative hypothesis: The sample data  does provide sufficient evidence to support the claim being made by an individual.

For example, suppose it’s assumed that the average height of a certain species of plant is 20 inches tall. However, one botanist claims the true average height is greater than 20 inches.

To test this claim, she may go out and collect a random sample of plants. She can then use this sample data to perform a hypothesis test using the following two hypotheses:

H 0 : μ ≤ 20 (the true mean height of plants is equal to or even less than 20 inches)

H A : μ > 20 (the true mean height of plants is greater than 20 inches)

If the sample data gathered by the botanist shows that the mean height of this species of plants is significantly greater than 20 inches, she can reject the null hypothesis and conclude that the mean height is greater than 20 inches.

Read through the following examples to gain a better understanding of how to write a null hypothesis in different situations.

Example 1: Weight of Turtles

A biologist wants to test whether or not the true mean weight of a certain species of turtles is 300 pounds. To test this, he goes out and measures the weight of a random sample of 40 turtles.

Here is how to write the null and alternative hypotheses for this scenario:

H 0 : μ = 300 (the true mean weight is equal to 300 pounds)

H A : μ ≠ 300 (the true mean weight is not equal to 300 pounds)

Example 2: Height of Males

It’s assumed that the mean height of males in a certain city is 68 inches. However, an independent researcher believes the true mean height is greater than 68 inches. To test this, he goes out and collects the height of 50 males in the city.

H 0 : μ ≤ 68 (the true mean height is equal to or even less than 68 inches)

H A : μ > 68 (the true mean height is greater than 68 inches)

Example 3: Graduation Rates

A university states that 80% of all students graduate on time. However, an independent researcher believes that less than 80% of all students graduate on time. To test this, she collects data on the proportion of students who graduated on time last year at the university.

H 0 : p ≥ 0.80 (the true proportion of students who graduate on time is 80% or higher)

H A : μ < 0.80 (the true proportion of students who graduate on time is less than 80%)

Example 4: Burger Weights

A food researcher wants to test whether or not the true mean weight of a burger at a certain restaurant is 7 ounces. To test this, he goes out and measures the weight of a random sample of 20 burgers from this restaurant.

H 0 : μ = 7 (the true mean weight is equal to 7 ounces)

H A : μ ≠ 7 (the true mean weight is not equal to 7 ounces)

Example 5: Citizen Support

A politician claims that less than 30% of citizens in a certain town support a certain law. To test this, he goes out and surveys 200 citizens on whether or not they support the law.

H 0 : p ≥ .30 (the true proportion of citizens who support the law is greater than or equal to 30%)

H A : μ < 0.30 (the true proportion of citizens who support the law is less than 30%)

Additional Resources

Introduction to Hypothesis Testing Introduction to Confidence Intervals An Explanation of P-Values and Statistical Significance

Featured Posts

null and alternative hypothesis statements

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

2 Replies to “How to Write a Null Hypothesis (5 Examples)”

you are amazing, thank you so much

Say I am a botanist hypothesizing the average height of daisies is 20 inches, or not? Does T = (ave – 20 inches) / √ variance / (80 / 4)? … This assumes 40 real measures + 40 fake = 80 n, but that seems questionable. Please advise.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

Microbe Notes

Microbe Notes

Null hypothesis and alternative hypothesis with 9 differences

Null hypothesis and alternative hypothesis

Table of Contents

Interesting Science Videos

Null hypothesis definition

The null hypothesis is a general statement that states that there is no relationship between two phenomenons under consideration or that there is no association between two groups.

  • A hypothesis, in general, is an assumption that is yet to be proved with sufficient pieces of evidence. A null hypothesis thus is the hypothesis a researcher is trying to disprove.
  • A null hypothesis is a hypothesis capable of being objectively verified, tested, and even rejected.
  • If a study is to compare method A with method B about their relationship, and if the study is preceded on the assumption that both methods are equally good, then this assumption is termed as the null hypothesis.
  • The null hypothesis should always be a specific hypothesis, i.e., it should not state about or approximately a certain value.

Null hypothesis symbol

  • The symbol for the null hypothesis is H 0, and it is read as H-null, H-zero, or H-naught.
  • The null hypothesis is usually associated with just ‘equals to’ sign as a null hypothesis can either be accepted or rejected.

Null hypothesis purpose

  • The main purpose of a null hypothesis is to verify/ disprove the proposed statistical assumptions.
  • Some scientific null hypothesis help to advance a theory.
  • The null hypothesis is also used to verify the consistent results of multiple experiments. For e.g., the null hypothesis stating that there is no relation between some medication and age of the patients supports the general effectiveness conclusion, and allows recommendations.

Null hypothesis principle

  • The principle of the null hypothesis is collecting the data and determining the chances of the collected data in the study of a random sample, proving that the null hypothesis is true.
  • In situations or studies where the collected data doesn’t complete the expectation of the null hypothesis, it is concluded that the data doesn’t provide sufficient or reliable pieces of evidence to support the null hypothesis and thus, it is rejected.
  • The data collected is tested through some statistical tool which is designed to measure the extent of departure of the date from the null hypothesis.
  • The procedure decides whether the observed departure obtained from the statistical tool is larger than a defined value so that the probability of occurrence of a high departure value is very small under the null hypothesis.
  • However, some data might not contradict the null hypothesis which explains that only a weak conclusion can be made and that the data doesn’t provide strong pieces of evidence against the null hypothesis and the null hypothesis might or might not be true.
  • Under some other conditions, if the data collected is sufficient and is capable of providing enough evidence, the null hypothesis can be considered valid, indicating no relationship between the phenomena.

When to reject null hypothesis?

  • When the p-value of the data is less than the significant level of the test, the null hypothesis is rejected, indicating the test results are significant.
  • However, if the p-value is higher than the significant value, the null hypothesis is not rejected, and the results are considered not significant.
  • The level of significance is an important concept while hypothesis testing as it determines the percentage risk of rejecting the null hypothesis when H 0 might happen to be true.
  • In other words, if we take the level of significance at 5%, it means that the researcher is willing to take as much as a 5 percent risk of rejecting the null hypothesis when it (H 0 ) happens to be true.
  • The null hypothesis cannot be accepted because the lack of evidence only means that the relationship is not proven. It doesn’t prove that something doesn’t exist, but it just means that there are not enough shreds of evidence and the study might have missed it.

Null hypothesis examples

The following are some examples of null hypothesis:

  • If the hypothesis is that “the consumption of a particular medicine reduces the chances of heart arrest”, the null hypothesis will be “the consumption of the medicine doesn’t reduce the chances of heart arrest.”
  • If the hypothesis is that, “If random test scores are collected from men and women, does the score of one group differ from the other?” a possible null hypothesis will be that the mean test score of men is the same as that of the women.

H 0 : µ 1 = µ 2

H 0 = null hypothesis µ 1 = mean score of men µ 2 = mean score of women

Alternative hypothesis definition

An alternative hypothesis is a statement that describes that there is a relationship between two selected variables in a study.

  • An alternative hypothesis is usually used to state that a new theory is preferable to the old one (null hypothesis).
  • This hypothesis can be simply termed as an alternative to the null hypothesis.
  • The alternative hypothesis is the hypothesis that is to be proved that indicates that the results of a study are significant and that the sample observation is not results just from chance but from some non-random cause.
  • If a study is to compare method A with method B about their relationship and we assume that the method A is superior or the method B is inferior, then such a statement is termed as an alternative hypothesis.
  • Alternative hypotheses should be clearly stated, considering the nature of the research problem.

Alternative hypothesis symbol

  • The symbol of the alternative hypothesis is either H 1 or H a while using less than, greater than or not equal signs.

Alternative hypothesis purpose

  • An alternative hypothesis provides the researchers with some specific restatements and clarifications of the research problem.
  • An alternative hypothesis provides a direction to the study, which then can be utilized by the researcher to obtain the desired results.
  • Since the alternative hypothesis is selected before conducting the study, it allows the test to prove that the study is supported by evidence, separating it from the researchers’ desires and values.
  • An alternative hypothesis provides a chance of discovering new theories that can disprove an existing one that might not be supported by evidence.
  • The alternative hypothesis is important as they prove that a relationship exists between two variables selected and that the results of the study conducted are relevant and significant.

Alternative hypothesis principle

  • The principle behind the alternative hypothesis is similar to that of the null hypothesis.
  • The alternative hypothesis is based on the concept that when sufficient evidence is collected from the data of random sample, it provides a basis for proving the assumption made by the researcher regarding the study.
  • Like in the null hypothesis, the data collected from a random sample is passed through a statistical tool that measures the extent of departure of the data from the null hypothesis.
  • If the departure is small under the selected level of significance, the alternative hypothesis is accepted, and the null hypothesis is rejected.
  • If the data collected don’t have chances of being in the study of the random sample and are instead decided by the relationship within the sample of the study, an alternative hypothesis stands true.

Alternative hypothesis examples

The following are some examples of alternative hypothesis:

1. If a researcher is assuming that the bearing capacity of a bridge is more than 10 tons, then the hypothesis under this study will be:

Null hypothesis H 0 : µ= 10 tons Alternative hypothesis H a : µ>10 tons

2. Under another study that is trying to test whether there is a significant difference between the effectiveness of medicine against heart arrest, the alternative hypothesis will be that there is a relationship between the medicine and chances of heart arrest.

Null hypothesis vs Alternative hypothesis

  • R. Kothari (1990) Research Methodology. Vishwa Prakasan. India.
  • https://www.statisticssolutions.com/null-hypothesis-and-alternative-hypothesis/
  • https://byjus.com/maths/null-hypothesis/
  • https://en.wikipedia.org/wiki/Null_hypothesis
  • https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html
  • 5% – https://en.wikipedia.org/wiki/Null_hypothesis
  • 3% – https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html
  • 2% – https://byjus.com/maths/null-hypothesis/
  • 1% – https://www.wisdomjobs.com/e-university/research-methodology-tutorial-355/procedure-for-hypothesis-testing-11525.html
  • 1% – https://www.thoughtco.com/definition-of-null-hypothesis-and-examples-605436
  • 1% – https://www.quora.com/What-are-the-different-types-of-hypothesis-and-what-are-some-examples-of-them
  • 1% – https://www.dummies.com/education/math/statistics/what-a-p-value-tells-you-about-statistical-data/
  • 1% – https://www.coursehero.com/file/p7jfbal5/These-are-hypotheses-capable-of-being-objectively-verified-and-tested-Thus-we/
  • 1% – https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/anova/how-to/one-way-anova/interpret-the-results/all-statistics-and-graphs/methods/
  • 1% – https://stats.stackexchange.com/questions/105319/test-whether-there-is-a-significant-difference-between-two-groups
  • 1% – https://statisticsbyjim.com/hypothesis-testing/failing-reject-null-hypothesis/
  • 1% – https://quizlet.com/45299306/statistics-flash-cards/
  • <1% – https://www.thoughtco.com/significance-level-in-hypothesis-testing-1147177
  • <1% – https://www.thoughtco.com/null-hypothesis-vs-alternative-hypothesis-3126413
  • <1% – https://www.sagepub.com/sites/default/files/upm-binaries/40007_Chapter8.pdf
  • <1% – https://www.differencebetween.com/difference-between-hypothesis-and-vs-assumption/
  • <1% – https://www.coursehero.com/file/18076181/introduction-to-hypothesis/
  • <1% – https://statisticsbyjim.com/glossary/significance-level/
  • <1% – https://quizlet.com/164755799/research-methods-midterm-2-flash-cards/
  • <1% – https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing/p-value-approach

About Author

Photo of author

Anupama Sapkota

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Difference between Null and Alternate Hypothesis

Hypothesis is a statement or an assumption that may be true or false. There are six types of hypotheses mainly the Simple hypothesis, Complex hypothesis, Directional hypothesis, Associative hypothesis, and Null hypothesis. Usually, the hypothesis is the start point of any scientific investigation, It gives the right direction to the process of investigation. It avoids the blind search and gives direction to the search. It acts as a compass in the process.

null-hypothesis-vs-alternative-hypothesis

Null hypothesis suggests that there is no relationship between the two variables. Null hypothesis is also exactly the opposite of the alternative hypothesis. Null hypothesis is generally what researchers or scientists try to disprove and if the null hypothesis gets accepted then we have to make changes in our opinion i.e. we have to make changes in our original opinion or statement in order to match null hypothesis. Null hypothesis is represented as H0. If my alternative hypothesis is that 55% of boys in my town are taller than girls then my alternative hypothesis will be that 55% of boys in my town are not taller than girls. 

Alternative hypothesis is a method for reaching a conclusion and making inferences and judgements about certain facts or a statement. This is done on the basis of the data which is available. Usually, the statement which we check regarding the null hypothesis is commonly known as the alternative hypothesis. Most of the times alternative hypothesis is exactly the opposite of the null hypothesis. This is what generally researchers or scientists try to approve. Alternative hypothesis is represented as Ha or H1. If my null hypothesis is that 55% of boys in my town are not taller than girls then my alternative hypothesis will be that 55% of boys in my town are taller than girls.

Following is the difference between the null hypothesis and alternate hypothesis:

author

Similar Reads

  • Machine Learning Mathematics if you want to build your career in the field of Machine Learning as a beginner or professional looking for a career change then before directly jumping into machine learning you have to know the few Mathematical Concepts which include Statistics, Probability Distribution, Linear Algebra and Matrix, 6 min read

Linear Algebra and Matrix

  • Matrices Matrix is a rectangular array of numbers, symbols, points, or characters each belonging to a specific row and column. A matrix is identified by its order which is given in the form of rows ⨯ and columns. The numbers, symbols, points, or characters present inside a matrix are called the elements of a 15+ min read
  • Scalar and Vector Scalar and Vector Quantities are used to describe the motion of an object. Scalar Quantities are defined as physical quantities that have magnitude or size only. For example, distance, speed, mass, density, etc. However, vector quantities are those physical quantities that have both magnitude and di 8 min read
  • Python Program to Add Two Matrices Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in Python. Examples: Input : X= [[1,2,3], [4 ,5,6], [7 ,8,9]] Y = [[9,8,7], [6,5,4], [3,2,1]] Output : result= [[10,10,10], [10,10,10], [10,10,10]]Table of Content Add Two Matrices Using for loopAdd Two Matr 4 min read
  • Python Program to Multiply Two Matrices Given two matrices, we will have to create a program to multiply two matrices in Python. Example: Python Matrix Multiplication of Two-Dimension [GFGTABS] Python matrix_a = [[1, 2], [3, 4]] matrix_b = [[5, 6], [7, 8]] result = [[0, 0], [0, 0]] for i in range(2): for j in range(2): result[i][j] = (mat 5 min read
  • Vector Operations Vector Operations are operations that are performed on vector quantities. Vector quantities are the quantities that have both magnitude and direction. So performing mathematical operations on them directly is not possible. So we have special operations that work only with vector quantities and hence 9 min read
  • Product of Vectors Vector operations are used almost everywhere in the field of physics. Many times these operations include addition, subtraction, and multiplication. Addition and subtraction can be performed using the triangle law of vector addition. In the case of products, vector multiplication can be done in two 6 min read
  • Scalar Product of Vectors Two vectors or a vector and a scalar can be multiplied. There are mainly two kinds of products of vectors in physics, scalar multiplication of vectors and Vector Product (Cross Product) of two vectors. The result of the scalar product of two vectors is a number (a scalar). The common use of the scal 9 min read
  • Dot and Cross Products on Vectors A quantity that is characterized not only by magnitude but also by its direction, is called a vector. Velocity, force, acceleration, momentum, etc. are vectors.   Vectors can be multiplied in two ways: Scalar product or Dot productVector Product or Cross productTable of Content Scalar Product/Dot Pr 9 min read
  • Transpose a matrix in Single line in Python Transpose of a matrix is a task we all can perform very easily in Python (Using a nested loop). But there are some interesting ways to do the same in a single line. In Python, we can implement a matrix as a nested list (a list inside a list). Each element is treated as a row of the matrix. For examp 4 min read
  • Transpose of a Matrix Transpose of a matrix is a very common method used for matrix transformation in linear algebra. Transpose of a matrix is obtained by interchanging the rows and columns of the given matrix or vice versa. Transpose of a matrix can be utilized to obtain the adjoint and inverse of the matrices. Before l 15+ min read
  • Adjoint and Inverse of a Matrix Given a square matrix, find the adjoint and inverse of the matrix. We strongly recommend you to refer determinant of matrix as a prerequisite for this. Adjoint (or Adjugate) of a matrix is the matrix obtained by taking the transpose of the cofactor matrix of a given square matrix is called its Adjoi 15+ min read
  • How to inverse a matrix using NumPy In this article, we will see NumPy Inverse Matrix in Python before that we will try to understand the concept of it. The inverse of a matrix is just a reciprocal of the matrix as we do in normal arithmetic for a single number which is used to solve the equations to find the value of unknown variable 3 min read
  • Program to find Determinant of a Matrix The determinant of a Matrix is defined as a special number that is defined only for square matrices (matrices that have the same number of rows and columns). A determinant is used in many places in calculus and other matrices related to algebra, it actually represents the matrix in terms of a real n 15+ min read
  • Program to find Normal and Trace of a matrix Given a 2D matrix, the task is to find Trace and Normal of matrix.Normal of a matrix is defined as square root of sum of squares of matrix elements.Trace of a n x n square matrix is sum of diagonal elements. Examples : Input : mat[][] = {{7, 8, 9}, {6, 1, 2}, {5, 4, 3}}; Output : Normal = 16 Trace = 6 min read
  • Data Science | Solving Linear Equations Linear Algebra is a very fundamental part of Data Science. When one talks about Data Science, data representation becomes an important aspect of Data Science. Data is represented usually in a matrix form. The second important thing in the perspective of Data Science is if this data contains several 9 min read
  • Data Science - Solving Linear Equations with Python A collection of equations with linear relationships between the variables is known as a system of linear equations. The objective is to identify the values of the variables that concurrently satisfy each equation, each of which is a linear constraint. By figuring out the system, we can learn how the 4 min read
  • System of Linear Equations In mathematics, a system of linear equations consists of two or more linear equations that share the same variables. These systems often arise in real-world applications, such as engineering, physics, economics, and more, where relationships between variables need to be analyzed. Understanding how t 9 min read
  • System of Linear Equations in three variables using Cramer's Rule Cramer's rule: In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknown variables. It expresses the solution in terms of the determinants of the coefficient matrix and of matrices obtained from it by replacing one colu 12 min read
  • Eigenvalues and Eigenvectors Eigenvectors are the directions that remain unchanged during a transformation, even if they get longer or shorter. Eigenvalues are the numbers that indicate how much something stretches or shrinks during that transformation. These ideas are important in many areas of math and engineering, including 15+ min read
  • Applications of Eigenvalues and Eigenvectors Eigenvalues and eigenvectors are indispensable mathematical concepts that find widespread application across various fields of engineering. Understanding their significance allows engineers to analyze and solve complex problems efficiently. This article explores the practical applications of eigenva 7 min read
  • How to compute the eigenvalues and right eigenvectors of a given square array using NumPY? In this article, we will discuss how to compute the eigenvalues and right eigenvectors of a given square array using NumPy library. Example: Suppose we have a matrix as: [[1,2], [2,3]] Eigenvalue we get from this matrix or square array is: [-0.23606798 4.23606798] Eigenvectors of this matrix are: [[ 2 min read

Statistics for Machine Learning

  • Descriptive Statistic Whenever we deal with some piece of data no matter whether it is small or stored in huge databases statistics is the key that helps us to analyze this data and provide insightful points to understand the whole data without going through each of the data pieces in the complete dataset at hand. In thi 6 min read
  • Measures of Central Tendency Usually, frequency distribution and graphical representation are used to depict a set of raw data to attain meaningful conclusions from them. However, sometimes, these methods fail to convey a proper and clear picture of the data as expected. Therefore, some measures, also known as Measures of Centr 5 min read
  • Measures of Dispersion | Types, Formula and Examples Measures of Dispersion are used to represent the scattering of data. These are the numbers that show the various aspects of the data spread across various parameters. Let's learn about the measure of dispersion in statistics , its types, formulas, and examples in detail. Dispersion in StatisticsDisp 10 min read
  • Mean, Variance and Standard Deviation Mean, Variance and Standard Deviation are fundamental concepts in statistics and engineering mathematics, essential for analyzing and interpreting data. These measures provide insights into data's central tendency, dispersion, and spread, which are crucial for making informed decisions in various en 8 min read
  • Calculate the average, variance and standard deviation in Python using NumPy Numpy in Python is a general-purpose array-processing package. It provides a high-performance multidimensional array object and tools for working with these arrays. It is the fundamental package for scientific computing with Python. Numpy provides very easy methods to calculate the average, variance 5 min read
  • Random Variable Random variable is a fundamental concept in statistics that bridges the gap between theoretical probability and real-world data. A Random variable in statistics is a function that assigns a real value to an outcome in the sample space of a random experiment. For example: if you roll a die, you can a 11 min read
  • Difference between Parametric and Non-Parametric Methods Statistical analysis plays a crucial role in understanding and interpreting data across various disciplines. Two prominent approaches in statistical analysis are Parametric and Non-Parametric Methods. While both aim to draw inferences from data, they differ in their assumptions and underlying princi 8 min read
  • Probability Distribution - Function, Formula, Table A probability distribution describes how the probabilities of different outcomes are assigned to the possible values of a random variable. It provides a way of modeling the likelihood of each outcome in a random experiment. While a frequency distribution shows how often outcomes occur in a sample or 15+ min read
  • Confidence Interval In the realm of statistics, precise estimation is paramount to drawing meaningful insights from data. One of the indispensable tools in this pursuit is the confidence interval. Confidence intervals provide a systematic approach to quantifying the uncertainty associated with sample statistics, offeri 12 min read
  • Covariance and Correlation Covariance and correlation are the two key concepts in Statistics that help us analyze the relationship between two variables. Covariance measures how two variables change together, indicating whether they move in the same or opposite directions. In this article, we will learn about the differences 6 min read
  • Program to find correlation coefficient Given two array elements and we have to find the correlation coefficient between two arrays. The correlation coefficient is an equation that is used to determine the strength of the relation between two variables. The correlation coefficient is sometimes called as cross-correlation coefficient. The 8 min read
  • Robust Correlation Correlation is a statistical tool that is used to analyze and measure the degree of relationship or degree of association between two or more variables. There are generally three types of correlation: Positive correlation: When we increase the value of one variable, the value of another variable inc 8 min read
  • Normal Probability Plot The probability plot is a way of visually comparing the data coming from different distributions. These data can be of empirical dataset or theoretical dataset. The probability plot can be of two types: P-P plot: The (Probability-to-Probability) p-p plot is the way to visualize the comparing of cumu 3 min read
  • Quantile Quantile plots The quantile-quantile( q-q plot) plot is a graphical method for determining if a dataset follows a certain probability distribution or whether two samples of data came from the same population or not. Q-Q plots are particularly useful for assessing whether a dataset is normally distributed or if it 8 min read
  • True Error vs Sample Error True Error The true error can be said as the probability that the hypothesis will misclassify a single randomly drawn sample from the population. Here the population represents all the data in the world. Let's consider a hypothesis h(x) and the true/target function is f(x) of population P. The proba 3 min read
  • Bias-Variance Trade Off - Machine Learning It is important to understand prediction errors (bias and variance) when it comes to accuracy in any machine-learning algorithm. There is a tradeoff between a model’s ability to minimize bias and variance which is referred to as the best solution for selecting a value of Regularization constant. A p 3 min read
  • Understanding Hypothesis Testing Hypothesis testing is a fundamental statistical method employed in various fields, including data science, machine learning, and statistics, to make informed decisions based on empirical evidence. It involves formulating assumptions about population parameters using sample statistics and rigorously 15+ min read
  • T-test In statistics, various tests are used to compare different samples or groups and draw conclusions about populations. These tests, known as statistical tests, focus on analyzing the likelihood or probability of obtaining the observed data under specific assumptions or hypotheses. They provide a frame 14 min read
  • Paired T-Test - A Detailed Overview Student’s t-test or t-test is the statistical method used to determine if there is a difference between the means of two samples. The test is often performed to find out if there is any sampling error or unlikeliness in the experiment. This t-test is further divided into 3 types based on your data a 5 min read
  • P-value in Machine Learning P-value helps us determine how likely it is to get a particular result when the null hypothesis is assumed to be true. It is the probability of getting a sample like ours or more extreme than ours if the null hypothesis is correct. Therefore, if the null hypothesis is assumed to be true, the p-value 6 min read
  • F-Test in Statistics F test is a statistical test that is used in hypothesis testing, that determines whether or not the variances of two populations or two samples are equal. An f distribution is what the data in a f test conforms to. By dividing the two variances, this test compares them using the f statistic. Dependi 7 min read
  • Z-test : Formula, Types, Examples Z-test is especially useful when you have a large sample size and know the population's standard deviation. Different tests are used in statistics to compare distinct samples or groups and make conclusions about populations. These tests, also referred to as statistical tests, concentrate on examinin 15+ min read
  • Residual Leverage Plot (Regression Diagnostic) In linear or multiple regression, it is not enough to just fit the model into the dataset. But, it may not give the desired result. To apply the linear or multiple regression efficiently to the dataset. There are some assumptions that we need to check on the dataset that made linear/multiple regress 5 min read
  • Difference between Null and Alternate Hypothesis Hypothesis is a statement or an assumption that may be true or false. There are six types of hypotheses mainly the Simple hypothesis, Complex hypothesis, Directional hypothesis, Associative hypothesis, and Null hypothesis. Usually, the hypothesis is the start point of any scientific investigation, I 3 min read
  • Mann and Whitney U test Mann and Whitney's U-test or Wilcoxon rank-sum test is the non-parametric statistic hypothesis test that is used to analyze the difference between two independent samples of ordinal data. In this test, we have provided two randomly drawn samples and we have to verify whether these two samples is fro 4 min read
  • Wilcoxon Signed Rank Test Prerequisites: Parametric and Non-Parametric Methods Hypothesis Testing Wilcoxon signed-rank test, also known as Wilcoxon matched pair test is a non-parametric hypothesis test that compares the median of two paired groups and tells if they are identically distributed or not. We can use this when: Di 4 min read
  • Kruskal Wallis Test Kruskal Wallis Test: It is a nonparametric test. It is sometimes referred to as One-Way ANOVA on ranks. It is a nonparametric alternative to One-Way ANOVA. It is an extension of the Man-Whitney Test to situations where more than two levels/populations are involved. This test falls under the family o 4 min read
  • Friedman Test Friedman Test: It is a non-parametric test alternative to the one way ANOVA with repeated measures. It tries to determine if subjects changed significantly across occasions/conditions. For example:- Problem-solving ability of a set of people is the same or different in Morning, Afternoon, Evening. I 5 min read
  • Probability Class 10 Important Questions Probability is a fundamental concept in mathematics for measuring of chances of an event happening By assigning numerical values to the chances of different outcomes, probability allows us to model, analyze, and predict complex systems and processes. Probability Formulas for Class 10 It says the pos 4 min read

Probability and Probability Distributions

  • Mathematics - Law of Total Probability Probability theory is the branch of mathematics concerned with the analysis of random events. It provides a framework for quantifying uncertainty, predicting outcomes, and understanding random phenomena. In probability theory, an event is any outcome or set of outcomes from a random experiment, and 13 min read
  • Bayes's Theorem for Conditional Probability Bayes's Theorem for Conditional Probability: Bayes's Theorem is a fundamental result in probability theory that describes how to update the probabilities of hypotheses when given evidence. Named after the Reverend Thomas Bayes, this theorem is crucial in various fields, including engineering, statis 9 min read
  • Mathematics | Probability Distributions Set 1 (Uniform Distribution) Prerequisite - Random Variable In probability theory and statistics, a probability distribution is a mathematical function that can be thought of as providing the probabilities of occurrence of different possible outcomes in an experiment. For instance, if the random variable X is used to denote the 4 min read
  • Mathematics | Probability Distributions Set 4 (Binomial Distribution) The previous articles talked about some of the Continuous Probability Distributions. This article covers one of the distributions which are not continuous but discrete, namely the Binomial Distribution. Introduction - To understand the Binomial distribution, we must first understand what a Bernoulli 5 min read
  • Mathematics | Probability Distributions Set 5 (Poisson Distribution) The previous article covered the Binomial Distribution. This article talks about another Discrete Probability Distribution, the Poisson Distribution. Introduction -Suppose an event can occur several times within a given unit of time. When the total number of occurrences of the event is unknown, we c 4 min read
  • Uniform Distribution | Formula, Definition and Examples Uniform Distribution is the probability distribution that represents equal likelihood of all outcomes within a specific range. i.e. the probability of each outcome occurring is the same. Whether dealing with a simple roll of a fair die or selecting a random number from a continuous interval, uniform 11 min read
  • Mathematics | Probability Distributions Set 2 (Exponential Distribution) The previous article covered the basics of Probability Distributions and talked about the Uniform Probability Distribution. This article covers the Exponential Probability Distribution which is also a Continuous distribution just like Uniform Distribution. Introduction - Suppose we are posed with th 5 min read
  • Mathematics | Probability Distributions Set 3 (Normal Distribution) The previous two articles introduced two Continuous Distributions: Uniform and Exponential. This article covers the Normal Probability Distribution, also a Continuous distribution, which is by far the most widely used model for continuous measurement. Introduction - Whenever a random experiment is r 5 min read
  • Mathematics | Beta Distribution Model The Beta Distribution is a continuous probability distribution defined on the interval [0, 1], widely used in statistics and various fields for modeling random variables that represent proportions or probabilities. It is particularly useful when dealing with scenarios where the outcomes are bounded 12 min read
  • Gamma Distribution Model in Mathematics Introduction : Suppose an event can occur several times within a given unit of time. When the total number of occurrences of the event is unknown, we can think of it as a random variable. Now, if this random variable X has gamma distribution, then its probability density function is given as follows 2 min read
  • Chi-Square Test for Feature Selection - Mathematical Explanation One of the primary tasks involved in any supervised Machine Learning venture is to select the best features from the given dataset to obtain the best results. One way to select these features is the Chi-Square Test. Mathematically, a Chi-Square test is done on two distributions two determine the lev 4 min read
  • Student's t-distribution in Statistics As we know normal distribution assumes two important characteristics about the dataset: a large sample size and knowledge of the population standard deviation. However, if we do not meet these two criteria, and we have a small sample size or an unknown population standard deviation, then we use the 10 min read
  • Python - Central Limit Theorem Central Limit Theorem (CLT) is a foundational principle in statistics, and implementing it using Python can significantly enhance data analysis capabilities. Statistics is an important part of data science projects. We use statistical tools whenever we want to make any inference about the population 7 min read
  • Limits, Continuity and Differentiability Limits, Continuity, and Differentiability are fundamental concepts in calculus, essential for analyzing and understanding the behavior of functions. These concepts are crucial for solving real-world problems in physics, engineering, and economics. Table of Content LimitsKey Characteristics of Limits 10 min read
  • Implicit Differentiation Implicit Differentiation is the process of differentiation in which we differentiate the implicit function without converting it into an explicit function. For example, we need to find the slope of a circle with an origin at 0 and a radius r. Its equation is given as x2 + y2 = r2. Now, to find the s 6 min read

Calculus for Machine Learning

  • Partial Derivatives in Engineering Mathematics Partial derivatives are a basic concept in multivariable calculus. They convey how a function would change when one of its input variables changes, while keeping all the others constant. This turns out to be particularly useful in fields such as physics, engineering, economics, and computer science, 10 min read
  • Advanced Differentiation Derivatives are used to measure the rate of change of any quantity. This process is called differentiation. It can be considered as a building block of the theory of calculus. Geometrically speaking, the derivative of any function at a particular point gives the slope of the tangent at that point of 8 min read
  • How to find Gradient of a Function using Python? The gradient of a function simply means the rate of change of a function. We will use numdifftools to find Gradient of a function. Examples: Input : x^4+x+1 Output :Gradient of x^4+x+1 at x=1 is 4.99 Input :(1-x)^2+(y-x^2)^2 Output :Gradient of (1-x^2)+(y-x^2)^2 at (1, 2) is [-4. 2.] Approach: For S 2 min read
  • Optimization techniques for Gradient Descent Gradient Descent is a widely used optimization algorithm for machine learning models. However, there are several optimization techniques that can be used to improve the performance of Gradient Descent. Here are some of the most popular optimization techniques for Gradient Descent: Learning Rate Sche 4 min read
  • Higher Order Derivatives Higher order derivatives refer to the derivatives of a function that are obtained by repeatedly differentiating the original function. The first derivative of a function, f′(x), represents the rate of change or slope of the function at a point.The second derivative, f′′(x), is the derivative of the 6 min read
  • Taylor Series Taylor Series is the series which is used to find the value of a function. It is the series of polynomials or any function and it contains the sum of infinite terms. Each successive term in the Taylor series expansion has a larger exponent or a higher degree term than the preceding term. We take the 10 min read
  • Application of Derivative - Maxima and Minima | Mathematics The Concept of derivative can be used to find the maximum and minimum value of the given function. We know that information about and gradient or slope can be derived from the derivative of a function. We try to find a point which has zero gradients then locate maximum and minimum value near it. It 3 min read
  • Absolute Minima and Maxima Absolute Maxima and Minima are the maximum and minimum values of the function defined on a fixed interval. A function in general can have high values or low values as we move along the function. The maximum value of the function in any interval is called the maxima and the minimum value of the funct 12 min read
  • Optimization for Data Science From a mathematical foundation viewpoint, it can be said that the three pillars for data science that we need to understand quite well are Linear Algebra , Statistics and the third pillar is Optimization which is used pretty much in all data science algorithms. And to understand the optimization con 5 min read
  • Unconstrained Multivariate Optimization Wikipedia defines optimization as a problem where you maximize or minimize a real function by systematically choosing input values from an allowed set and computing the value of the function. That means when we talk about optimization we are always interested in finding the best solution. So, let sa 4 min read
  • Lagrange Multipliers | Definition and Examples In mathematics, a Lagrange multiplier is a potent tool for optimization problems and is applied especially in the cases of constraints. Named after the Italian-French mathematician Joseph-Louis Lagrange, the method provides a strategy to find maximum or minimum values of a function along one or more 8 min read
  • Lagrange's Interpolation What is Interpolation? Interpolation is a method of finding new data points within the range of a discrete set of known data points (Source Wiki). In other words interpolation is the technique to estimate the value of a mathematical function, for any intermediate value of the independent variable. F 7 min read
  • Linear Regression in Machine learning Machine Learning is a branch of Artificial intelligence that focuses on the development of algorithms and statistical models that can learn from and make predictions on data. Linear regression is also a type of machine-learning algorithm more specifically a supervised machine-learning algorithm that 15+ min read
  • Ordinary Least Squares (OLS) using statsmodels In this article, we will use Python's statsmodels module to implement Ordinary Least Squares ( OLS ) method of linear regression. Introduction : A linear regression model establishes the relation between a dependent variable( y ) and at least one independent variable( x ) as : [Tex] \hat{y}=b_1x+b_0 4 min read

Regression in Machine Learning

  • Difference Between

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Key Differences

Know the Differences & Comparisons

Difference Between Null and Alternative Hypothesis

null vs alternative hypothesis

Null hypothesis implies a statement that expects no difference or effect. On the contrary, an alternative hypothesis is one that expects some difference or effect. Null hypothesis This article excerpt shed light on the fundamental differences between null and alternative hypothesis.

Content: Null Hypothesis Vs Alternative Hypothesis

Comparison chart, definition of null hypothesis.

A null hypothesis is a statistical hypothesis in which there is no significant difference exist between the set of variables. It is the original or default statement, with no effect, often represented by H 0 (H-zero). It is always the hypothesis that is tested. It denotes the certain value of population parameter such as µ, s, p. A null hypothesis can be rejected, but it cannot be accepted just on the basis of a single test.

Definition of Alternative Hypothesis

A statistical hypothesis used in hypothesis testing, which states that there is a significant difference between the set of variables. It is often referred to as the hypothesis other than the null hypothesis, often denoted by H 1 (H-one). It is what the researcher seeks to prove in an indirect way, by using the test. It refers to a certain value of sample statistic, e.g., x¯, s, p

The acceptance of alternative hypothesis depends on the rejection of the null hypothesis i.e. until and unless null hypothesis is rejected, an alternative hypothesis cannot be accepted.

Key Differences Between Null and Alternative Hypothesis

The important points of differences between null and alternative hypothesis are explained as under:

  • A null hypothesis is a statement, in which there is no relationship between two variables. An alternative hypothesis is a statement; that is simply the inverse of the null hypothesis, i.e. there is some statistical significance between two measured phenomenon.
  • A null hypothesis is what, the researcher tries to disprove whereas an alternative hypothesis is what the researcher wants to prove.
  • A null hypothesis represents, no observed effect whereas an alternative hypothesis reflects, some observed effect.
  • If the null hypothesis is accepted, no changes will be made in the opinions or actions. Conversely, if the alternative hypothesis is accepted, it will result in the changes in the opinions or actions.
  • As null hypothesis refers to population parameter, the testing is indirect and implicit. On the other hand, the alternative hypothesis indicates sample statistic, wherein, the testing is direct and explicit.
  • A null hypothesis is labelled as H 0 (H-zero) while an alternative hypothesis is represented by H 1 (H-one).
  • The mathematical formulation of a null hypothesis is an equal sign but for an alternative hypothesis is not equal to sign.
  • In null hypothesis, the observations are the outcome of chance whereas, in the case of the alternative hypothesis, the observations are an outcome of real effect.

There are two outcomes of a statistical test, i.e. first, a null hypothesis is rejected and alternative hypothesis is accepted, second, null hypothesis is accepted, on the basis of the evidence. In simple terms, a null hypothesis is just opposite of alternative hypothesis.

You Might Also Like:

hypothesis vs theory

Zipporah Thuo says

February 22, 2018 at 6:06 pm

The comparisons between the two hypothesis i.e Null hypothesis and the Alternative hypothesis are the best.Thank you.

Getu Gamo says

March 4, 2019 at 3:42 am

Thank you so much for the detail explanation on two hypotheses. Now I understood both very well, including their differences.

Jyoti Bhardwaj says

May 28, 2019 at 6:26 am

Thanks, Surbhi! Appreciate the clarity and precision of this content.

January 9, 2020 at 6:16 am

John Jenstad says

July 20, 2020 at 2:52 am

Thanks very much, Surbhi, for your clear explanation!!

Navita says

July 2, 2021 at 11:48 am

Thanks for the Comparison chart! it clears much of my doubt.

GURU UPPALA says

July 21, 2022 at 8:36 pm

Thanks for the Comparison chart!

Enock kipkoech says

September 22, 2022 at 1:57 pm

What are the examples of null hypothesis and substantive hypothesis

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Null and Alternative Hypothesis: Research Guidelines

Author Avatar

  • Icon Calendar 17 June 2024
  • Icon Page 2753 words
  • Icon Clock 13 min read

When undertaking a qualitative or quantitative research project, researchers must first formulate a research question, from which they develop their theories. By definition, an assumption is a prediction that a researcher makes about an actual research question and can either be affirmative or negative. In this case, writing a research question has three main components: variables (independent and dependent), a population sample, and the relation between these variables. To find null and alternative hypotheses, scholars identify a specific research question, determine the variables involved, and state H0 as no effect or difference and H1 or Ha as a significant effect or difference. When the prediction contradicts the research question, it is referred to as a null assumption. In short, an initial theory is a statement that implies there is no relationship between independent and dependent variables. Hence, researchers need to learn how to write a good null and alternative hypothesis to present quality studies.

General Aspects

Students with qualitative or quantitative research assignments must learn how to formulate and write good research questions and proposition statements. In essence, hypothesis testing is a statistical method used to determine if there is enough evidence to reject an initial theory and support an alternative assumption based on sample data. By definition, a research proposition is an assumption or prediction that a scholar makes before undertaking an experimental investigation. Basically, academic standards require such a prediction to be a precise and testable statement, meaning that researchers must prove or disapprove of it in the course of their assignment and provide alternatives if possible. In this case, the main components of a typical research assumption are variables (independent and dependent), a population sample, and the relation between these variables. To formulate a null hypothesis (H0) in quantitative research, researchers state there is no effect or difference between variables (e.g., µ1 = µ2), and, for an alternative hypothesis (H1 or Ha), they posit there is a significant effect or difference (e.g., µ1 ≠ µ2). Therefore, a research proposition is a prediction that scholars write about the relationship between two or more variables. In turn, a standard research inquiry is a particular process that seeks to answer a specific research question and, in the process, test a particular theory by confirming or disapproving it.

How to write a null and alternative hypothesis

Types of Hypotheses

There are several types of hypotheses, including null, alternative, directional, and non-directional assumptions. Basically, a directional hypothesis is a prediction of how an independent variable affects a dependent variable. In contrast, a non-directional hypothesis predicts that an independent variable influences a dependent variable but does not specify how. Regardless of the type, all propositions are about predicting the relationship between independent and dependent variables. To write H0 (null assumption) and H1 or Ha (alternative prediction), researchers clearly state H0 as a central assumption of no effect or no difference (e.g., µ1 = µ2) and H1 or Ha as a secondary assumption of a significant effect or difference (e.g., µ1 ≠ µ2).

What Is a Null Hypothesis (H0) and Its Purpose

According to its definition, a null hypothesis is a foundational statement in statistical testing that posits there is no significant effect, relationship, or difference between groups or variables within a given study. In simple words, a null hypothesis, usually symbolized as “H0,” is a statement that contradicts an actual research theory (Watt & Collins, 2019). The main purpose of writing a null hypothesis is to provide a basis for comparison, allowing researchers to determine whether there is sufficient evidence to reject this assumption in favor of an alternative theory, which suggests a real effect or relationship. As such, it is a negative statement, indicating that there is no relationship or connection between independent and dependent variables (Harrison et al., 2020). By starting with a null proposition, researchers can also employ various statistical tests to evaluate an entire data, ensuring the objectivity of findings and minimizing their bias. The process helps to ensure the validity of scientific research, minimizing the likelihood of drawing incorrect conclusions from the data collected. Moreover, by testing an initial theory, researchers can determine whether the inquiry results are due to the chance or the effect of manipulating a dependent variable (McNulty, 2022). In most instances, a null assumption corresponds with an alternative theory, a positive statement that covers a relationship that exists between independent and dependent variables. Finally, it is highly recommended that researchers should write an alternative assumption first before a null proposition.

What Is an Alternative Hypothesis (H1 or Ha) and Its Purpose

According to its definition and opposite to a null assumption, an alternative hypothesis in research is another statement in statistical testing that suggests there is a significant effect, relationship, or difference between groups or variables in a given study. Basically, this statement contrasts with what a null theory posits, which asserts that no such effect or relationship exists (Baker, 2021). The main purpose of writing an alternative hypothesis is to guide researchers in testing and validating new theories or effects and determine whether the observed data can provide evidence against a null proposition. The process involves comparing observed results to what would be expected under a null assumption. When statistical tests provide enough evidence to reject an initial postulation, an alternative theory becomes true, indicating that the observed effect or relationship is likely real and not due to random variation (Jawlik, 2016). By framing their research around an alternative hypothesis, scientists can focus their investigations on discovering meaningful effects and relationships, thereby advancing knowledge and understanding in their study fields. Hence, writing good null and alternative hypotheses is important because they provide a structured framework for statistical testing, allowing researchers to objectively evaluate evidence and draw conclusions about the presence of significant effects or relationships in an entire data.

Null vs. Alternative Hypothesis Formats

Steps on how to write a good null and alternative hypothesis.

  • Identify a Specific Research Question: Start with clearly defining a particular problem or phenomenon you want to study.
  • Determine Key Variables: Identify independent and dependent variables involved in your study.
  • State a Specific Null Hypothesis (H0): Formulate a concrete statement that suggests no effect, no difference, or no relationship between your variables. This is usually a statement of equality (e.g., µ1 = µ2).
  • State a Clear Alternative Hypothesis (H1 or Ha): Formulate another statement that suggests a significant effect, difference, or relationship between your variables. This is usually a statement of inequality (e.g., µ1 ≠ µ2, µ1 > µ2, or µ1 < µ2).
  • Means: H0: µ1 = µ2 vs. H1: µ1 ≠ µ2
  • Proportions: H0: p1 = p2 vs. H1: p1 ≠ p2
  • One-tailed test: If you are testing for a specific direction of effect (e.g., H1: µ1 > µ2).
  • Two-tailed test: If you are testing for any difference, regardless of direction (e.g., H1: µ1 ≠ µ2).
  • Consult Literature: Review existing research to see how similar or alternative theories have been formulated. This can provide guidance and ensure your expectations are aligned with standard practices in your field.
  • Write in Simple Terms: Ensure both null and alternative theories are stated clearly and concisely, making them easy to understand.
  • Review and Refine: Double-check your propositions for clarity and correctness. Make sure they are mutually exclusive and collectively exhaustive, covering all possible outcomes.
  • Seek Feedback: Discuss your approaches with peers or advisors to ensure they are logical, relevant, and testable. Adjust as necessary based on their input.

Note: A null hypothesis is a specific statement assuming no effect or difference, while other hypotheses refer to general statements that include writing null and alternative hypotheses and proposing possible outcomes to be tested.

Written Examples of Research Questions With H0 and H1 Hypotheses

Before developing any study proposition, a researcher must formulate a specific research question. In this case, a research hypothesis is a broad, testable statement about the expected relationship between variables, while a statistical hypothesis specifically refers to writing null and alternative hypotheses used in statistical testing to validate or refute an initial study assumption (O’Donnell et al., 2023). Then, the next step is to transform this study question into a negative statement that claims the lack of a relationship between independent and dependent variables. Alternatively, researchers can change the question into a positive statement that includes a relationship that exists between the variables. In turn, this latter statement becomes an alternative hypothesis and is symbolized as H1 or Ha. Hence, some of the examples of research questions and hull and alternative hypotheses are as follows:

Research Question (RQ) 1: Do physical exercises help individuals to age gracefully?

  • A Null Hypothesis (H0): Physical exercises are not a guarantee for graceful old age.
  • An Alternative Hypothesis (H1): Engaging in physical exercises enables individuals to remain healthy and active into old age.

RQ 2: What are the implications of therapeutic interventions in the fight against substance abuse?

  • H0: Therapeutic interventions are of no help in the fight against substance abuse.
  • H1: Exposing individuals with substance abuse disorders to therapeutic interventions helps to control and even stop their addictions.

RQ 3: How do sexual orientation and gender identity affect the experiences of late adolescents in foster care?

  • H0: Sexual orientation and gender identity have no effects on the experiences of late adolescents in foster care.
  • H1: The reality of stereotypes in society makes sexual orientation and gender identity factors complicate the experiences of late adolescents in foster care.

RQ 4: Does income inequality contribute to crime in high-density urban areas?

  • H0: There is no correlation between income inequality and incidences of crime in high-density urban areas.
  • H1: The high crime rates in high-density urban areas are due to the incidence of income inequality in those areas.

RQ 5: Does placement in foster care impact individuals’ mental health?

  • H0: There is no correlation between being in foster care and having mental health problems.
  • H1: Individuals placed in foster care experience anxiety and depression at one point in their life.

RQ 6: Do assistive devices and technologies lessen the mobility challenges of older adults with a stroke?

  • H0: Assistive devices and technologies do not provide any assistance to the mobility of older adults diagnosed with a stroke.
  • H1: Assistive devices and technologies enhance the mobility of older adults diagnosed with a stroke.

RQ 7: Does race identity undermine classroom participation?

  • H0: There is no correlation between racial identity and the ability to participate in classroom learning.
  • H1: Students from racial minorities are not as active as white students in classroom participation.

RQ 8: Do high school grades determine future success?

  • H0: There is no correlation between how one performs in high school and their success level in life.
  • H1: Attaining high grades in high school positions one for greater success in the future personal and professional lives.

RQ 9: Does critical thinking predict academic achievement?

  • H0: There is no correlation between critical thinking and academic achievement.
  • H1: Being a critical thinker is a pathway to academic success.

RQ 10: What benefits does group therapy provide to victims of domestic violence?

  • H0: Group therapy does not help victims of domestic violence because individuals prefer to hide rather than expose their shame.
  • H1: Group therapy provides domestic violence victims with a platform to share their hurt and connect with others with similar experiences.

Symbols and Signs in Writing

Common Mistakes

  • Ambiguity in Theories: Writing vague or unclear null and alternative assumptions.
  • Directional vs. Non-Directional Confusion: Confusing one-tailed (directional) and two-tailed (non-directional) claims.
  • Using Sample Statistics: Stating initial and alternative propositions in terms of sample statistics instead of population parameters.
  • Overlapping Assumptions: Creating null and alternative statements that are not mutually exclusive.
  • Testing Multiple Variables: Including multiple variables or conditions in a single theory.
  • Misinterpreting a Null Proposition: Assuming an initial statement is what you want to prove.
  • Incorrect Symbols and Signs: Using incorrect or inconsistent symbols and signs for writing null and alternative propositions.
  • Ignoring Context: Writing initial and alternative theories that are not relevant to an assigned research question or context.
  • Not Testable Hypotheses: Formulating null and alternative statements that are not testable with the available data or methods.
  • Confusing Null and Alternative Hypotheses: Swapping the roles of null and alternative assumptions.

The formulation of research questions in qualitative and quantitative assignments helps students to develop a specific theory for their experiments. In this case, learning how to write a good null and alternative hypothesis helps students and researchers to make their research relevant. Basically, the difference between a null and alternative hypothesis is that the former contradicts an entire research question, while the latter affirms it. In short, an initial proposition is a negative statement relative to a particular research question, and an alternative theory is a positive assumption. Moreover, it is important to note that developing a null hypothesis at the beginning of the assignment is for prediction purposes. As such, the research work must answer a specific research question and confirm or disapprove of an initial proposition. Hence, some of the tips that students and researchers need to know when developing any theory include:

  • Formulate a research question that specifies the relationship between an independent variable and a dependent variable.
  • Develop an alternative assumption that says a relationship exists between the variables.
  • Develop a null proposition that says a relationship does not exist between the variables.
  • Conduct an experiment to answer a research question under analysis, which allows the confirmation of a disapproval of a null theory or considering alternative options.

Baker, L. (2021). Hypothesis testing: How to choose the correct test (Getting started with statistics) . Chi-Squared Innovations.

Harrison, A. J., McErlain-Naylor, S. A., Bradshaw, E. J., Dai, B., Nunome, H., Hughes, G. T. G., Kong, P. W., Vanwanseele, B., Vilas-Boas, J. P., & Fong, D. T. (2020). Recommendations for statistical analysis involving null hypothesis significance testing. Sports Biomechanics , 19 (5), 561–568. https://doi.org/10.1080/14763141.2020.1782555

Jawlik, A. (2016). Statistics from A to Z: Confusing concepts clarified . John Wiley & Sons, Inc.

McNulty, R. (2022). A logical analysis of null hypothesis significance testing using popular terminology. BMC Medical Research Methodology , 22 (1), 1–9. https://doi.org/10.1186/s12874-022-01696-5

O’Donnell, C. T., Fielding-Singh, V., & Vanneman, M. W. (2023). The art of the null hypothesis — Considerations for study design and scientific reporting. Journal of Cardiothoracic and Vascular Anesthesia , 37 (6), 867–869. https://doi.org/10.1053/j.jvca.2023.02.026

Watt, R., & Collins, E. (2019). Null hypothesis testing . SAGE Publications Ltd.

To Learn More, Read Relevant Articles

SAT essay examples

SAT Essay Examples With Explanations and Recommendations

  • Icon Calendar 29 July 2020
  • Icon Page 3990 words

How to cite lecture notes in APA

How to Cite Lecture Notes in APA: Basic Guidelines

  • Icon Calendar 27 July 2020
  • Icon Page 2390 words

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

10.1 - setting the hypotheses: examples.

A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or differences between means or proportions or correlations or odds ratios or any other numerical summary of the population. The alternative hypothesis is typically the research hypothesis of interest. Here are some examples.

Example 10.2: Hypotheses with One Sample of One Categorical Variable Section  

About 10% of the human population is left-handed. Suppose a researcher at Penn State speculates that students in the College of Arts and Architecture are more likely to be left-handed than people found in the general population. We only have one sample since we will be comparing a population proportion based on a sample value to a known population value.

  • Research Question : Are artists more likely to be left-handed than people found in the general population?
  • Response Variable : Classification of the student as either right-handed or left-handed

State Null and Alternative Hypotheses

  • Null Hypothesis : Students in the College of Arts and Architecture are no more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Art and Architecture = 10% or p = .10).
  • Alternative Hypothesis : Students in the College of Arts and Architecture are more likely to be left-handed than people in the general population (population percent of left-handed students in the College of Arts and Architecture > 10% or p > .10). This is a one-sided alternative hypothesis.

Example 10.3: Hypotheses with One Sample of One Measurement Variable Section  

 two Diphenhydramine pills

A generic brand of the anti-histamine Diphenhydramine markets a capsule with a 50 milligram dose. The manufacturer is worried that the machine that fills the capsules has come out of calibration and is no longer creating capsules with the appropriate dosage.

  • Research Question : Does the data suggest that the population mean dosage of this brand is different than 50 mg?
  • Response Variable : dosage of the active ingredient found by a chemical assay.
  • Null Hypothesis : On the average, the dosage sold under this brand is 50 mg (population mean dosage = 50 mg).
  • Alternative Hypothesis : On the average, the dosage sold under this brand is not 50 mg (population mean dosage ≠ 50 mg). This is a two-sided alternative hypothesis.

Example 10.4: Hypotheses with Two Samples of One Categorical Variable Section  

vegetarian airline meal

Many people are starting to prefer vegetarian meals on a regular basis. Specifically, a researcher believes that females are more likely than males to eat vegetarian meals on a regular basis.

  • Research Question : Does the data suggest that females are more likely than males to eat vegetarian meals on a regular basis?
  • Response Variable : Classification of whether or not a person eats vegetarian meals on a regular basis
  • Explanatory (Grouping) Variable: Sex
  • Null Hypothesis : There is no sex effect regarding those who eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis = population percent of males who eat vegetarian meals on a regular basis or p females = p males ).
  • Alternative Hypothesis : Females are more likely than males to eat vegetarian meals on a regular basis (population percent of females who eat vegetarian meals on a regular basis > population percent of males who eat vegetarian meals on a regular basis or p females > p males ). This is a one-sided alternative hypothesis.

Example 10.5: Hypotheses with Two Samples of One Measurement Variable Section  

low carb meal

Obesity is a major health problem today. Research is starting to show that people may be able to lose more weight on a low carbohydrate diet than on a low fat diet.

  • Research Question : Does the data suggest that, on the average, people are able to lose more weight on a low carbohydrate diet than on a low fat diet?
  • Response Variable : Weight loss (pounds)
  • Explanatory (Grouping) Variable : Type of diet
  • Null Hypothesis : There is no difference in the mean amount of weight loss when comparing a low carbohydrate diet with a low fat diet (population mean weight loss on a low carbohydrate diet = population mean weight loss on a low fat diet).
  • Alternative Hypothesis : The mean weight loss should be greater for those on a low carbohydrate diet when compared with those on a low fat diet (population mean weight loss on a low carbohydrate diet > population mean weight loss on a low fat diet). This is a one-sided alternative hypothesis.

Example 10.6: Hypotheses about the relationship between Two Categorical Variables Section  

  • Research Question : Do the odds of having a stroke increase if you inhale second hand smoke ? A case-control study of non-smoking stroke patients and controls of the same age and occupation are asked if someone in their household smokes.
  • Variables : There are two different categorical variables (Stroke patient vs control and whether the subject lives in the same household as a smoker). Living with a smoker (or not) is the natural explanatory variable and having a stroke (or not) is the natural response variable in this situation.
  • Null Hypothesis : There is no relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is = 1).
  • Alternative Hypothesis : There is a relationship between whether or not a person has a stroke and whether or not a person lives with a smoker (odds ratio between stroke and second-hand smoke situation is > 1). This is a one-tailed alternative.

This research question might also be addressed like example 11.4 by making the hypotheses about comparing the proportion of stroke patients that live with smokers to the proportion of controls that live with smokers.

Example 10.7: Hypotheses about the relationship between Two Measurement Variables Section  

  • Research Question : A financial analyst believes there might be a positive association between the change in a stock's price and the amount of the stock purchased by non-management employees the previous day (stock trading by management being under "insider-trading" regulatory restrictions).
  • Variables : Daily price change information (the response variable) and previous day stock purchases by non-management employees (explanatory variable). These are two different measurement variables.
  • Null Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) = 0.
  • Alternative Hypothesis : The correlation between the daily stock price change (\$) and the daily stock purchases by non-management employees (\$) > 0. This is a one-sided alternative hypothesis.

Example 10.8: Hypotheses about comparing the relationship between Two Measurement Variables in Two Samples Section  

Calculation of a person's approximate tip for their meal

  • Research Question : Is there a linear relationship between the amount of the bill (\$) at a restaurant and the tip (\$) that was left. Is the strength of this association different for family restaurants than for fine dining restaurants?
  • Variables : There are two different measurement variables. The size of the tip would depend on the size of the bill so the amount of the bill would be the explanatory variable and the size of the tip would be the response variable.
  • Null Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the same at family restaurants as it is at fine dining restaurants.
  • Alternative Hypothesis : The correlation between the amount of the bill (\$) at a restaurant and the tip (\$) that was left is the difference at family restaurants then it is at fine dining restaurants. This is a two-sided alternative hypothesis.

Academic Success Center

Statistics Resources

  • Excel - Tutorials
  • Basic Probability Rules
  • Single Event Probability
  • Complement Rule
  • Intersections & Unions
  • Compound Events
  • Levels of Measurement
  • Independent and Dependent Variables
  • Entering Data
  • Central Tendency
  • Data and Tests
  • Displaying Data
  • Discussing Statistics In-text
  • SEM and Confidence Intervals
  • Two-Way Frequency Tables
  • Empirical Rule
  • Finding Probability
  • Accessing SPSS
  • Chart and Graphs
  • Frequency Table and Distribution
  • Descriptive Statistics
  • Converting Raw Scores to Z-Scores
  • Converting Z-scores to t-scores
  • Split File/Split Output
  • Sampling Methods
  • Partial Eta Squared
  • Downloading and Installing G*Power: Windows/PC
  • Correlation
  • Testing Parametric Assumptions
  • One-Way ANOVA
  • Two-Way ANOVA
  • Repeated Measures ANOVA
  • Goodness-of-Fit
  • Test of Association
  • Pearson's r
  • Point Biserial
  • Mediation and Moderation
  • Simple Linear Regression
  • Multiple Linear Regression
  • Binomial Logistic Regression
  • Multinomial Logistic Regression
  • Independent Samples T-test
  • Dependent Samples T-test
  • Testing Assumptions
  • T-tests using SPSS
  • T-Test Practice
  • Quantitative Research Questions
  • Null & Alternative Hypotheses
  • One-Tail vs. Two-Tail
  • Alpha & Beta
  • Associated Probability
  • Decision Rule
  • Statement of Conclusion
  • Statistics Group Sessions

ASC Chat Hours

ASC Chat is usually available at the following times ( Pacific Time):

If there is not a coach on duty, submit your question via one of the below methods:

  928-440-1325

  Ask a Coach

  [email protected]

Search our FAQs on the Academic Success Center's  Ask a Coach   page.

Once you have developed a clear and focused research question or set of research questions, you’ll be ready to conduct further research, a literature review, on the topic to help you make an educated guess about the answer to your question(s). This educated guess is called a hypothesis.

In research, there are two types of hypotheses: null and alternative. They work as a complementary pair, each stating that the other is wrong.

  • Null Hypothesis (H 0 ) – This can be thought of as the implied hypothesis. “Null” meaning “nothing.”  This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change.
  • Alternative Hypothesis (H a ) – This is also known as the claim. This hypothesis should state what you expect the data to show, based on your research on the topic. This is your answer to your research question.

Null Hypothesis:   H 0 : There is no difference in the salary of factory workers based on gender. Alternative Hypothesis :  H a : Male factory workers have a higher salary than female factory workers.

Null Hypothesis :  H 0 : There is no relationship between height and shoe size. Alternative Hypothesis :  H a : There is a positive relationship between height and shoe size.

Null Hypothesis :  H 0 : Experience on the job has no impact on the quality of a brick mason’s work. Alternative Hypothesis :  H a : The quality of a brick mason’s work is influenced by on-the-job experience.

Was this resource helpful?

  • << Previous: Hypothesis Testing
  • Next: One-Tail vs. Two-Tail >>
  • Last Updated: Dec 19, 2024 8:10 AM
  • URL: https://resources.nu.edu/statsresources

NCU Library Home

If you could change one thing about college, what would it be?

Graduate faster

Better quality online classes

Flexible schedule

Access to top-rated instructors

Long table full of college students eating

Null vs. Alternative Hypothesis

04.28.2023 • 5 min read

Sarah Thomas

Subject Matter Expert

Learn about a null versus alternative hypothesis and what they show with examples for each. Also go over the main differences and similarities between them.

In This Article

What Is a Null Hypothesis?

What is an alternative hypothesis, outcomes of a hypothesis test.

Main Differences Between Null & Alternative Hypothesis

Similarities Between Null & Alternative Hypothesis

Hypothesis Testing & Errors

In statistics, you’ll draw insights or “inferences” about population parameters using data from a sample. This process is called inferential statistics.

To make statistical inferences, you need to determine if you have enough evidence to support a certain hypothesis about the population. This is where null and alternative hypotheses come into play!

In this article, we’ll explain the differences between these two types of hypotheses, and we’ll explain the role they play in hypothesis testing.

Imagine you want to know what percent of Americans are vegetarians. You find a Gallup poll claiming ‌5% of the population was vegetarian in 2018, but your intuition tells you vegetarianism is on the rise and that ‌far more than 5% of Americans are vegetarian today.

To investigate further, you collect your own sample data by surveying 1,000 randomly selected Americans. You’ll use this random sample to determine whether it’s likely ‌the true population proportion of vegetarians is, in fact, 5% (as the Gallup data suggests) or whether it could be the case that the percentage of vegetarians is now higher.

Notice ‌that your investigation involves two rival hypotheses about the population. One hypothesis is that the proportion of vegetarians is 5%. The other hypothesis is that the proportion of vegetarians is greater than 5%. In statistics, we would call the first hypothesis the null hypothesis, and the second hypothesis the alternative hypothesis. The null hypothesis ( H 0 H_0 H 0 ​ ) represents the status quo or what is assumed to be true about the population at the start of your investigation.

Null Hypothesis

In hypothesis testing, the null hypothesis ( H 0 H_0 H 0 ​ ) is the default hypothesis.

It's what the status quo assumes to be true about the population.

The alternative hypothesis ( H a H_a H a ​ or H 1 H_1 H 1 ​ ) is the hypothesis that stands contrary to the null hypothesis. The alternative hypothesis ‌represents the research hypothesis—what you as the statistician are trying to prove with your data .

In medical studies, where scientists are trying to demonstrate whether a treatment has a significant effect on patient outcomes, the alternative hypothesis represents the hypothesis that the treatment does have an effect, while the null hypothesis represents the assumption that the treatment has no effect.

Alternative Hypothesis

The alternative hypothesis ( H a H_a H a ​ or H 1 H_1 H 1 ​ ) is the hypothesis being proposed in opposition to the null hypothesis.

Examples of Null and Alternative Hypotheses

In a hypothesis test, the null and alternative hypotheses must be mutually exclusive statements, meaning both hypotheses cannot be true at the same time. For example, if the null hypothesis includes an equal sign, the alternative hypothesis must state that the values being mentioned are “not equal” in some way.

Your hypotheses will also depend on the formulation of your test—are you running a one-sample T-test, a two-sample T-test, F-test for ANOVA , or a Chi-squared test? It also matters whether you are conducting a directional one-tailed test or a nondirectional two-tailed test.

Example 1: Two-Tailed T-test

Null Hypothesis: The population mean is equal to some number, x. 𝝁 = x

Alternative Hypothesis: The population mean is not equal to x. 𝝁 ≠ x

Example 2: One-tailed T-test (Right-Tailed)

Null Hypothesis: The population mean is less than or equal to some number, x. 𝝁 ≤ x Alternative Hypothesis: The population mean is greater than x. 𝝁 > x

Example 3: One-tailed T-test (Left-Tailed)

Null Hypothesis: The population mean is greater than or equal to some number, x. 𝝁 ≥ x

Alternative Hypothesis: The population mean is less than x. 𝝁 < x

By the end of a hypothesis test, you will have reached one of two conclusions.

You will run into either 2 outcomes:

Fail to reject the null hypothesis on the grounds that there's insufficient evidence to move away from the null hypothesis

Reject the null hypothesis in favor of the alternative.

Chart going over 2 possible outcomes of a hypothesis test

If you’re ‌confused about the outcomes of a hypothesis test, a good analogy is a jury trial. In a jury trial, the defendant is innocent until proven guilty. To reach a verdict of guilt, the jury must find strong evidence (beyond a reasonable doubt) that the defendant committed the crime.

This is analogous to a statistician who must assume the null hypothesis is true unless they can uncover strong evidence ( a p-value less than or equal to the significance level) in support of the alternative hypothesis.

Notice also, that a jury never concludes a defendant is innocent—only that the defendant is guilty or not guilty. This is similar to how we never conclude that the null hypothesis is true. In a hypothesis test, we never conclude ‌that the null hypothesis is true. We can only “reject” the null hypothesis or “fail to reject” it.

In this video, let’s look at the jury example again, the reasoning behind hypothesis testing, and how to form a test. It starts by stating your null and alternative hypotheses.

Main Differences Between Null and Alternative Hypothesis

Here is a summary of the key differences between the null and the alternative hypothesis test.

The null hypothesis represents the status quo; the alternative hypothesis represents an alternative statement about the population.

The null and the alternative are mutually exclusive statements, meaning both statements cannot be true at the same time.

In a medical study, the null hypothesis represents the assumption that a treatment has no statistically significant effect on the outcome being studied. The alternative hypothesis represents the belief that the treatment does have an effect.

The null hypothesis is denoted by H_0 ; the alternative hypothesis is denoted by H_a H_1

You “fail to reject” the null hypothesis when the p-value is larger than the significance level. You “reject” the null hypothesis in favor of the alternative hypothesis when the p-value is less than or equal to your test’s significance level.

Similarities Between Null and Alternative Hypothesis

The similarities between the null and alternative hypotheses are as follows.

Both the null and the alternative are statements about the same underlying data.

Both statements provide a possible answer to a statistician’s research question.

The same hypothesis test will provide evidence for or against the null and alternative hypotheses.

Hypothesis Testing and Errors

Always remember that statistical inference provides you with inferences based on probability rather than hard truths. Anytime you conduct a hypothesis test, there is a chance that you’ll reach the wrong conclusion about your data.

In statistics, we categorize these wrong conclusions into two types of errors:

Type I Errors

Type II Errors

Type I Error (ɑ)

A Type I error occurs when you reject the null hypothesis when, in fact, the null hypothesis is true. This is sometimes called a false positive and is analogous to a jury that falsely convicts an innocent defendant. The probability of making this type of error is represented by alpha, ɑ.

Type II Error (ꞵ)

A Type II error occurs when you fail to reject the null hypothesis when, in fact, the null hypothesis is false. This is sometimes called a false negative and is analogous to a jury that reaches a verdict of “not guilty,” when, in fact, the defendant has committed the crime. The probability of making this type of error is represented by beta, ꞵ.

Outcomes of a Hypothesis test showing type I and type II errors

Explore Outlier's Award-Winning For-Credit Courses

Outlier (from the co-founder of MasterClass) has brought together some of the world's best instructors, game designers, and filmmakers to create the future of online college.

Check out these related courses:

Intro to Statistics

Intro to Statistics

How data describes our world.

Intro to Microeconomics

Intro to Microeconomics

Why small choices have big impact.

Intro to Macroeconomics

Intro to Macroeconomics

How money moves our world.

Intro to Psychology

Intro to Psychology

The science of the mind.

Related Articles

Neon colored image of a door representing degrees of freedom

Degrees of Freedom In Statistics

Explore degrees of freedom. Learn about their importance, calculation methods, and two test types. Plus dive into solved examples for better understanding.

Closeup of a tangelo tree

What Is Standard Error? Statistics Calculation and Overview

Learn what is standard error in statistics. This overview explains the definition, the process, the difference with standard deviation, and includes examples.

Quilt shapes representing Quartiles

What Are Quartiles? Statistics 101

Learn what quartiles are and how they work in statistics. Understand how to calculate them and why even learn them.

Further Reading

What is the second derivative test [full guide], how to find derivatives in 3 steps, test statistics: definition, formulas & examples, what is the product rule [with examples], understanding math probability - definition, formula & how to find it, what is a residual in stats.

IMAGES

  1. 15 Hypothesis Examples (2024)

    null and alternative hypothesis statements

  2. Null Hypothesis and Alternative Hypothesis

    null and alternative hypothesis statements

  3. Research Hypothesis Generator

    null and alternative hypothesis statements

  4. Hypothesis Examples

    null and alternative hypothesis statements

  5. statistics

    null and alternative hypothesis statements

  6. Null and Alternative Hypothesis

    null and alternative hypothesis statements

COMMENTS

  1. Null and Alternative Hypotheses | Definitions & Examples

    May 6, 2022 · The null hypothesis (H 0) answers “No, there’s no effect in the population.” The alternative hypothesis (H a) answers “Yes, there is an effect in the population.” The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample.

  2. Null and Alternative Hypotheses | Introduction to Statistics

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

  3. How to Write a Null Hypothesis (5 Examples) - Statology

    Mar 10, 2021 · H 0 (Null Hypothesis): Population parameter =, ≤, ≥ some value. H A (Alternative Hypothesis): Population parameter <, >, ≠ some value. Note that the null hypothesis always contains the equal sign. We interpret the hypotheses as follows: Null hypothesis: The sample data provides no evidence to support some claim being made by an individual.

  4. Null hypothesis and alternative hypothesis with 9 differences

    Aug 3, 2023 · Alternative hypothesis: Definition: The null hypothesis is a general statement that states that there is no relationship between two phenomenons under consideration or that there is no association between two groups. An alternative hypothesis is a statement that describes that there is a relationship between two selected variables in a study ...

  5. Difference between Null and Alternate Hypothesis

    May 18, 2022 · Usually, the statement which we check regarding the null hypothesis is commonly known as the alternative hypothesis. Most of the times alternative hypothesis is exactly the opposite of the null hypothesis. This is what generally researchers or scientists try to approve. Alternative hypothesis is represented as Ha or H1.

  6. Difference Between Null and Alternative Hypothesis

    An alternative hypothesis is a statement; that is simply the inverse of the null hypothesis, i.e. there is some statistical significance between two measured phenomenon. A null hypothesis is what, the researcher tries to disprove whereas an alternative hypothesis is what the researcher wants to prove.

  7. How to Write a Null and Alternative Hypothesis With Examples ...

    Jun 17, 2024 · In this case, a research hypothesis is a broad, testable statement about the expected relationship between variables, while a statistical hypothesis specifically refers to writing null and alternative hypotheses used in statistical testing to validate or refute an initial study assumption (O’Donnell et al., 2023).

  8. 10.1 - Setting the Hypotheses: Examples | STAT 100

    State Null and Alternative Hypotheses. Null Hypothesis: On the average, the dosage sold under this brand is 50 mg (population mean dosage = 50 mg). Alternative Hypothesis: On the average, the dosage sold under this brand is not 50 mg (population mean dosage ≠ 50 mg). This is a two-sided alternative hypothesis.

  9. Null & Alternative Hypotheses - Statistics Resources ...

    5 days ago · Null Hypothesis (H 0) – This can be thought of as the implied hypothesis. “Null” meaning “nothing.” This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change. Alternative Hypothesis (H a) – This is also known as the claim ...

  10. Null vs. Alternative Hypothesis - Outlier Articles

    Apr 28, 2023 · Alternative Hypothesis . The alternative hypothesis (H a H_a H a or H 1 H_1 H 1 ) is the hypothesis being proposed in opposition to the null hypothesis. Examples of Null and Alternative Hypotheses In a hypothesis test, the null and alternative hypotheses must be mutually exclusive statements, meaning both hypotheses cannot be true at the same time.